PHYSICAL REVIEW E 77, 011502 (2008)

Fluctuation and correlation effects in a charged surface immersed in an electrolyte solution
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We explore correlation and fluctuation effects in an overall neutral system consisting of a single homoge-
neously charged planar surface with both the counterions and coions distributed on both sides of the surface.
Using a field-theoretic formulation, we compute the one-loop correction to the electrostatic potential, to the ion
densities, to the surface tension, and to the surface free energy. From the asymptotic behavior of the electro-
static potential, we obtain an exact expression for the effective surface charge density, which can become
negative, indicating charge inversion. Furthermore, we find that the ion distributions can be substantially
different from the mean-field ion densities. In particular, the counterion density, at high couplings, develops a
minimum at some intermediate distances, larger than the Gouy-Chapman length, away from the charged
surface, whereas the coion density develops a maximum, whose values can be greater than the counterion
density. Therefore, the coions develop a second layer. Moreover, the one-loop correction always lowers the
electrostatic contributions to the surface tension and at high couplings, the surface tension may become

negative.

DOLI: 10.1103/PhysRevE.77.011502

I. INTRODUCTION

Electrostatic interaction plays an important role in many
biological problems and in colloidal science that involve
macroions in aqueous solutions [1]. The macroions may be
charged membranes [2], colloidal particles [3], or polyelec-
trolytes such as DNA [4]. The traditional description for
these charged systems relies on the mean-field Poisson-
Boltzmann (PB) theory, which fails for highly charged mac-
roions or in the presence of multivalent counterions [5-10].
In particular, it cannot account for such striking phenomena
as DNA condensation [11,12], charge inversion [7,13-16],
and like-charge attraction [17-21]. In the past couple of de-
cades, many theoretical approaches have been proposed in an
attempt to go beyond the mean-field theory (for recent com-
prehensive reviews, see Refs. [8—10]). These include the
integral-equation approach [5,9,22-24], the field-theory for-
mulation [25-28], the heuristic Wigner crystal approach
[29,30], and more recently, the strong-coupling theory [6,31].
While most of the recent progress has been made on
counterion-only systems [31-33], correlation effects in sys-
tems with added salt cannot be undermined since in realistic
experimental situations, there is always a finite amount of
added salt. In fact, water itself may be considered an elec-
trolyte solution because of the finite degree of dissociation of
water molecules. The interplay between three different
length scales in the problem—the Debye screening length,
the Gouy-Chapman length, and the Bjerrum length—makes
correlation effects far richer than the counterion-only sys-
tems. Moreover, a number of recent experiments on charged
systems with finite salt concentrations are carried out in a
regime where correlation effects might be important
[13,14,19-21]. Therefore, it is worthwhile to understand cor-
relation effects in charged surfaces immersed in an electro-
lyte solution.

Some aspects of correlation effects of charged surfaces in
salt solutions have been investigated using different methods
in the past. In Ref. [23], the ion-ion correlation function and
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the potential of mean force for a single charged hard wall in
contact with an electrolyte solution were discussed. The ion-
ion correlation function is equivalent to the Green’s function,
which represents the electrostatic interaction between two
test charges taking in account of the presence of the coun-
terions and coions. Attard et al. [24] computed the interac-
tion free energy of two similarly charged hard walls with
symmetric electrolyte in between, at the level of Debye-
Huckel closure, which is equivalent to the one-loop calcula-
tion here, and from the behavior of the pressure at the infinite
separation, an analytical expression for the effective charge
of the charged surface was obtained [15]. Using the Wigner
crystal approach, Shklovskii argued that correlation effects
lead to charge inversion of a charged surface [7,29]. The
phenomenon of charge inversion has also been studied nu-
merically using the hypernetted-chain approximation [16]. In
addition, these calculations, as well as a recent simulation
[34], revealed that the formation of a second layer of coion
adjacent to the counterions layer near the charged surface.
In this paper, we carry out a comprehensive study of cor-
relation effects using a field theoretical formulation and pro-
vide a unified treatment for all the phenomena mentioned
above. Our system consists of a charged surface immersed in
an electrolyte solution. We assume that the surface is perme-
able to ions, and thus the counterions and the coions are
distributed on both sides of the surface. This system may be
a good model for charged membranes, and in particular, for
those that contain ion pumps allowing ions to pass freely; the
latter systems are of current theoretical interest [35]. In ad-
dition to solving for the Green’s function for the system, we
compute the electrostatic potential, the ion distributions, the
surface tension, and the surface free energy, all to one-loop
order. From the asymptotic behaviors of the electrostatic po-
tential, we obtain an exact expression for the effective sur-
face charge density to one-loop order. Our expression is dif-
ferent from that of Attard et al. [24], although qualitatively
they exhibit similar behavior, with one notable difference: in
the limit of vanishing surface charge, the expression of At-
tard et al. [24] predicts that the effective charge is renormal-
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ized by a finite amount, whereas our expression predicts that
the effective charge is nor renormalized (correlation effects
comes in only at the second order in the expansion of van-
ishing charge). At higher couplings, we find that the effective
charge becomes negative, indicating charge inversion. Fur-
thermore, we find that the ion distributions can be substan-
tially different from the mean-field density. Particularly, the
counterion density develops a minimum at some intermedi-
ate distance greater than the Gouy-Chapman length, and the
coion density forms a second layer. The latter result has been
observed in a recent simulation [34]. Finally, we compute the
free energy analytically and extract the electrostatic contri-
bution to the surface tension, which becomes negative at
high couplings.

This paper is organized as follows. In Sec. II, we begin
with a brief presentation on the formulation of the field
theory for an overall neutral system consisting of a charged
surface with mobile ions of both signs, distributed on both
sides of the surface. In addition, in Sec. II A, we show that
the PB theory can be derived as a saddle-point approxima-
tion of the field theory, and we improve upon this approxi-
mation by performing a loop expansion, which captures cor-
relation effects systematically. We obtain formal expressions
for the electrostatic potential, the ion distributions, the grand
potential, and the free energy, all at the one-loop level. In
Sec. II B, we briefly review the main features of the mean-
field PB theory of our system. In Sec. III, we investigate
fluctuation effects in detail. In Sec. III A, we construct the
Green’s function, which is a central quantity for evaluating
various physical quantities at one loop, and we also discuss
the physics associated with it: the self-energy of an ion and
the interaction potential between two ions near the charged
surface. In Sec. III B, we obtain an explicit expression for the
one loop correction to the electrostatic potential, and discuss
charge renormalization of the surface at one loop. In Sec.
IIT C, we discuss ion distributions at the one loop level. In
Sec. III D, we compute the grand potential and the free en-
ergy at one-loop, and discuss, in particular, the electrostatic
contribution to the surface tension of the charged surface at
one-loop. This paper concludes in Sec. IV with a discussion
of the validity of the one-loop expansion. Technical details
are presented in the Appendixes.

II. FIELD THEORY FORMULATION

In this section, we briefly set up the field theory for a
system consisting of a charged surface with counterions and
coions distributed on both sides of the surface. For a more
elaborate discussion on the derivation of the field theory, see
Refs. [26,36]. One of the advantages of a field theory formu-
lation for charged systems is that it facilitates systematic per-
turbative calculations to investigate correlation effects, and it
allows, potentially, the immediate application of all of the
powerful techniques of field theory, such as the renormaliza-
tion group and nonperturbative methods, to study charged
systems.

Consider a system that consists of N_ pointlike particles
of charge —Z_e and N, pointlike particles of charge +Z,e, as
well as a single uniformly charged surface with a negative
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FIG. 1. A single charged plate in salt solution. The system is
symmetric with respect to z=0. Without the loss of generality, the
charged plate is assumed to have a negative surface-charge density
o=—eny, with counterions (solid circles) and coions (open circles)
present on both sides of the plate. It is assumed that the dielectric
constants are the same on both sides of the plate.

surface charge density of o(x) =—eny(x)=-end(z) [see Fig.
1]. The ions are distributed on both sides of the surface. We
assume that both sides have the same dielectric constant €. In
order to have a meaningful thermodynamic limit, the system
must be neutral; therefore, we impose the charge neutrality
condition, which can be written as

—Z_eN_+Z.eN,—enyA=0, (1)

where A is the area of the plane. The electrostatic energy of
the system may be written as

N. N.

2L, S 2, X zzi
ﬂEN+,N_ = E T = B+ : E E £
j>k| | >k |Xj x| j=1 k=1 x|
N, N_
~Z,2 () + 2.2 $(x;). (2)
j j

for a set of positive charges located at x; and a set of nega-
tive charges located at x;. In Eq. (2), B=1/(kgT), kp is the
Boltzmann constant, 7 is the temperature, [z=¢?/(ekgT) is
the Bjerrum length, and

nf(x’)

Ix-x'|’ )

d(x) =15 f d’x’'

which is the “external” potential induced by the presence of
the charged plate. Note that the external charge density 7/(x)
is always positive and that the sign convention has already
been tacitly imposed in Eq. (2). Introducing the counterion
density operator p,(x) =37 8(x-x}), the coions density op-
erator ﬁ_(x)EEﬁ—] d(x-x;), and the overall charge density
operator p.(x)=Z,p,(x)-Z_p_(x), we can write Eq. (2) as
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BEN,n_==ViN. = VoN_ - f xp(x) P(x)

f‘ﬁ fdg ,pL(X)pL(X)’ @)

[x - x']

where V,, are the bare (infinite) self-energies of the positive
and negative ions, respectively. They are defined by

. _Zh [ dPq 4m AwlgZh
Vo = =

2 Qemdqe 2

d’q 1
(2m)?*2q’

(5)

where in the last line we have integrated out the g, compo-
nent. The self-energy arises because Eq. (4) contains terms
that are evaluated at x=x' and they are absent in Eq. (2). In
what follows, we keep the self-energy terms and see how
they are canceled at the one-loop level. The partition func-
tion for this system is

N, + N_ _
211 f I | f X ) By

N\ ) & )N\ ) &
(6)

In order to reformulate Eq. (6) as a field theory, we introduce
the chemical potentials w, and w_ (in units of kzT) for the
positive and negative ions, respectively, and consider the
grand canonical partition function

Zy,n1d]=

[

2, u 8= 2 (e"N(e"Nzy y 4] (D)

N_,N,=0

After performing a Hubbard-Stratonovich transformation
[37], we find that Eq. (7) can be written as

2, ulel=No f Dpe=SI09],

2
stwg1= | d&{%w(x){— N

_ o 2] | (8)

] Y(x) — 6, e+ Zlvx+ex]
B

where S is the action functional, (x) is a fluctuating field,
which, as we show below, is related to the electrostatic po-
tential of the system, N is the normalization constant, and
0. =[exp(u++Vy)]/a’ denotes the fugacity of the ions.
The equilibrium average of a given physical quantity is gen-
erated by the partition function (8). For example, the equi-
librium density distributions for positive and negative ions
are given by

. _ . oinz, . [¢] + 7, [0+ $()]
(p+(x))= = Tz ] = 0. (e ). (9)

Since (8S/ 8i(x))=0, we have an exact relation
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VX)) = 47152, 0, (e*ZL100+ 600

— 4milyZ_ 0 (e 1oy, (10)

which can be interpreted as the Poisson equation from elec-
trostatics.

For simplicity, we consider an asymmetric electrolyte in
which the positive ions and negative ions have the same
valence Z,=Z_=Z but different radii a, # a_. Note that even
though the ions have different sizes, finite-ion size effects are
not included in the present work. Rescaling the field ¢
— Zi, the action is given by

Sl o] = i J d3x{ %l//(x)[_ V2]i(x) — A, e TH0+26(9]

_ A_e—[ub(XHZd’(X)]} , (11)

where we have defined 13547TZ22; and A . = 6.1z Equation
(11) is the final form of the action for our system. Note that
the transformation ¢(x)— ¥(x)+1uy and o — g g
leave the action S invariant. This invariance simply means
that the electrostatic potential is defined up to an arbitrary
constant [38]. Note also that the action S is inversely propor-
tional to /5. Therefore, [z may serve as an expansion param-
eter. In particular, for small 5, the partition function (8) is
dominated by a i(x) that corresponds to the maximum of S.
This is the saddle-point approximation, which is equivalent
to the mean-field Poisson-Boltzmann theory [25,26,36]. The
loop expansion, as we detail below, systematically improves
on the mean-field theory.

A. One-loop expansion

To systematically investigate correlation effects, we per-
form a loop expansion on the field theory characterized by
Eq. (8) with the action given by Eq. (11), thus extending the
formulation of Ref. [26] to the case of a charged surface
immersed in an electrolyte solution. For simplicity, we out-
line and collect results only up to one-loop order; formal
expressions for higher loops can be obtained in a straightfor-
ward manner.

As noted in Refs. [26,36], once correlation effects are
included, the saddle point is shifted from its zero-loop
(mean-field) value. This means that there is a nontrivial cor-
rection to the electrostatic potential, and that the chemical
potentials for the ions must be renormalized at the one-loop
level in order to maintain the charge neutrality condition (1).
Therefore, we have to perform a double expansion; let us
write A+—A(O)+ SA . and ¥(x)=ihy(x) + Ah(x), where iy(x)
represents the background field, which must be chosen ap-
proprlately Note that Ay{x) is of the order of Vg Ay(x)
~ \lB, while dA. ~[p at the one-loop level. Putting the
above expansions for A and for ¢(x) into Eq. (11), we find
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1
S[(/t, (j)] = 8[‘//0’ d,] _ l_ f d3X{§A+e+[z#’fo(x)+Z¢(x)]
B

+ SA_e [0+ Za(0ly

1
+ > f d’x J &Ex' AP(x)K(x,x")AYX') + S,
(12)
where we have chosen ¢(x), at the one-loop level, to obey
VA h(x)] - A(+O)e+[z¢0(x)+z¢(x)] + A lvox+zex)] —
(13)

so that the linear term proportional to A#(x) in the expansion
of the action S vanishes identically. In Eq. (12), the operator
K(x,x"), coming from the second variations of S, is given by

K(X,X,) = ll{_ V)Z( + AE(O)€+['%(X)+Z¢(X)]
B

+ A(_o)e—[u//o(X)+Z¢(X)]}5(x -x'), (14)

and the interacting part of the action &; is given by

d*x 1 3
51=—J— F(X)[1A¢(X)]+EH(X)[lAtﬂ(X)] +0(lp),

I
(15)
to one-loop order, where F(x) and H(x) are defined by
F(x) = 5A+e[z¢0(x)+z¢(x)] _ 5A_e—[lt//0(x)+sz>(x)]’ (16)

H(x) = A0+ 2800] _ AO) L0521 (17)

Equation (13) is equivalent to the Poisson-Boltzmann equa-
tion. To see this, we define

o) = 1) + Z9(x) ~ 5 AV, (18)

and in term of ¢y(x), Eq. (13) becomes

/
= V2o(x) + € sinhl gy(x)] = ~n/(x), (19)

which is indeed the nonlinear Poisson-Boltzmann equation
with k?=2 AiO)A(_O) as the inverse of the Debye screening
length squared. Note that the constant —% ln(A(_O)/ Aio)), in
Eq. (18) is needed to correctly produce the electrostatic po-
tential in the limiting case in which only counterions are
present, but otherwise it is immaterial. In Sec. II B, we will
briefly review the salient features of the mean-field theory
for this system.

To go beyond the mean-field description at the one-loop
level, we must include terms in S, Eq. (15), and compute
the correction to the electrostatic potential Ay(x) via
(Apx))=([1A(x)]e™51),, where (---), denotes the
average with respect to the Gaussian distribution. In particu-
lar, the correlation function at zero loop is given by
(APx)AP(x"))o=G(x,x"), where G(x,x’) is the Green’s
function, the inverse of K(x,x'): [d®yK(x,y)G(y,x")=8(x
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—x'). Note that G(x,x")~ I, and therefore, it is not renor-
malized at the one-loop level. In Sec. IIT A, we will solve for
G(x,x") explicitly for our system. Evaluating {[:Ay(x)]) to
one loop, we find a formal expression for it:

qmwmm=}fd&@uxv
B

X [%G(x’,x’)H(x’)—F(x’)]. (20)

In Sec. IIT B, we will evaluate {[1A¢4(x)]), explicitly and dis-
cuss its relevant physics, such as charge renormalization. By
the same token, the ion distributions at one-loop are given by

(P (X)), = O ZH 1090 =51y

Kle* ®p(x)

1 SA.
= —213 {1 * GAY(x)); — EG(X,X) + _A(a_?) }

21

Note that SA, and SA_, appearing in Egs. (20) and (21),
must be determined in such a way that all the (infinite) bare
self-energies V; cancel out and that ([tAg(x)]), satisfies
boundary conditions as imposed by the charge neutrality
condition. We will discuss our results for the ion distribu-
tions in Sec. IIT C.

The grand potential Q[¢p] is defined by Q]
=—kgT In Zm,u_[d’]' To one-loop order, we find that it is
formally given by

BOL ] = Sy, b] + % Indet K — % In det[— V2/1,]

1 J Px{ON, e IINIZH0) . s\ 20000,
Iy -

+0(lp), (22)

where the second term comes from the “Gaussian” integra-
tion over the quadratic order of Ay in Eq. (12), the third term
comes from the normalization constant Ny in Eq. (8), and the
fourth term comes from the expansion of A [see Eq. (12)].
Finally, the Helmholtz free energy is related to the grand-
canonical potential by

BF = BO[ ]+ f Px(p,(x)) + p_ f x(p_(x)).
(23)

In Sec. III D, we will evaluate the grand potential and the
free energy for our system to one-loop order explicitly.

B. Mean-field theory

Before discussing fluctuation effects, it is worthwhile to
summarize essential features of the mean-field theory, so that
we may compare it with fluctuation effects to be discussed in
the next section. The solution of the nonlinear Poisson-
Boltzmann equation (19) for a single charged plate with
n/x)=n,d(z) in a salt solution may be written as [1]

po(z) =4 tanh~1e<(+20) 24
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1+ (V1 + %= s)e
=21n 7
1-(1+s*- s)e"“z‘

(25)

where z is determined by the boundary condition dictated
by Gauss’s law at the surface ¢((0)=2/\, which leads
to sinh(xzg)=wkN=s, where N=4Z/(nylg) is the Gouy-
Chapman length, and s= k\. Note that s~! is proportional to
the bare surface charge density of the plate, n,. In Eq. (25),
7o may be interpreted as the length scale over which the
counterions are confined: for s<<1, zp~\, while for s>1,
zo~ kL. It is easy to see from Eq. (25) that the potential
@o(z) decays exponentially from the surface with a decaying
length set by «7!,

00(2) = 4(V1 + 5% = s)e™ 4 O (724 (26)

for |z| —cc. Thus, we may define an effective charge of the
charged surface as [39]

O'eff(s)E4s<\/1+b%—l). (27)

When the bare surface charge is low, s>1, o (s)~2/s,
which is proportional to the bare surface charge. This is the
Debye-Huckel (DH) regime, where linearization of the PB
equation is a good approximation. At high surface charge s
<1, o,(s)~4, which is independent of the bare surface
charge. This is the Gouy-Chapman (GC) regime, where most
of the counterions are confined near the surface with a thick-
ness of \.

From Egq. (9), the ion densities at the mean-field level may
be written as

2
P(J_?)(Z 0(0) ligp()+Zp(x)] _ _g"wo( 2)

2l
211+ V1+52—s ekl |2
_ x| 1= | Je ™ (28)
2| 17 (V1 +52—5)e

It is easy to verify that the charge neutrality condition (1)
expressed, at the mean-field level, as

fdgx[Z ep(o) (x) - Z_ep(_o)(x)] =engA (29)

is satisfied. In the DH regime, s> 1, the ion densities decay
exponentially to their bulk values of «*/(2lp). In the GC
regime s<l the counterion density reduces to the familiar
profile of p 9(2)=2/[15(|z]+\)?]. Note that at the mean-field
level, the electrostatic potential (25) and the ion densities
(28) at the charged surface satisfy the contact value theorem
[40], which in the case of added salt may be written as p, )
X(0)+ p(o)(O) 1/ 15=@}(0)/(Ig\), where the left-hand side
represents the (excess) pressure arising from the ion distri-
butions at the surface and the right-hand side represents the
electrostatic stress. Therefore, the contact value theorem is a
statement that the pressure at the charged surface equals to
the pressure in the bulk. However, as we see below in Sec.
III C, the ion distributions and the electrostatic potential for
our system at the one-loop level no longer obey the contact
value theorem, since it is an exact relation only for a charged
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hard wall [26,40] which is impermeable and impenetrable to
ions. Note that our charged surface is assumed to be perme-
able to ions.

At the mean-field level, the grand potential is simply
given by the zero-loop action BQ¢[ ¢]=S[ %, ¢], which has
the form BQo[ pl=—poV+ vo(s).A, as expected for an interfa-
cial problem [41]. The pressure (in units of kzT) is given by
po=K>/1z=2c,, from which we identify k*=2c,l5, where c, is
the average salt concentration. The surface tension y,(s) is
given by [42]

2 8
Yo(s) = — In(A7AL) - — (1 +5% =)
IB)\ lB)\

8 1+V1+s?
+— ln<—>. (30)
lB)\ S

Apart from the first factor, this agrees with the expression
given in Refs. [38,43]. Note that y;(s) is always positive and
diverges as yy(s) ~—Ins as s—0, i.e., no— . However, in
order to produce the electrostatic contribution to the surface
tension for the counterion-only case y,=-2n,, we must take
the limit A(_O)HO, not the s— 0 limit. Note that the first
factor is necessary to correctly produce this limit, but other-
wise it is immaterial as mentioned previously.

The mean-field Helmholtz free energy is related to the
grand potential by Eq. (23) with the mean-field densities, Eq.
(28). The chemical potentlals at zero loop are ,u,(+)=—V0

0) 3 llx dq 1
+In(6a P2

(5) for ions that have the same valence. The free energy,
again, has a volume (bulk) and a surface contribution of the

form BFo=B1YV+BfY A, with
2.3
BrY ——v0+f[1n("a> 1}, 31)

r), where V= is the bare self-energy

Iy 21,
4(N1 +5% =) 2
0)
= Ty = In(dY
A I\ LAY n(ay/a’)

8 (1+\"l+s)

+—In| ———
ZB)\ S
4 2.3

+—(\"l+s2—s){ln<ﬂ>—2}, (32)
I\ 21,

where a=(a,a_)"?. Apart from the self-energy term V,, Eq.
(31) is just the free energy density for an ideal gas with a
concentration of 2¢,. In the limit A(_O)—>0, Eq. (32) reduces
to the surface free energy density for a system with a charged
surface and counterions. Note that the infinite bare self-
energy V, terms in Egs. (31) and (32) may be considered
higher order terms in / since V;~ /g, and thus they may be
discarded. However, as we will see in Sec. III D, all the
infinite bare self-energy terms are canceled, leaving the free
energy at one loop perfectly finite.

III. FLUCTUATION EFFECTS

In this section, we investigate in detail fluctuation effects
in a highly charged surface immersed in an electrolyte solu-
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tion, as outlined in Sec. II A. In the subsequent sections, we
first construct the Green’s function, which not only is a cen-
tral quantity underlying our computational technique for
evaluating the one-loop correction to free energy, but also
has a physical meaning that is fundamental to understanding
correlation effects for our system. In particular, we discuss
the self-energy of an ion and the interaction potential for two
macroions near the charged surface. Both quantities are di-
rectly related to the Green’s function. In Sec. III B, we solve
for the one-loop correction to the electrostatic potential and
discuss charge renormalization of the charged surface. In
Sec. III C, we discuss ion distributions at one loop. In Sec.
III D, we evaluate the grand potential and free energy at one
loop explicitly and discuss the surface tension of the charged
surface.

A. Construction of the Green’s function

The Green’s function G(x,x’), which is the inverse of the
operator K(x,x') introduced in Eq. (14), satisfies

(- V24 & cosh[@y() IG(x,x") = [p8(x —x').  (33)

Using the identity cosh[¢y(z)]=1+2 csch? (|z]+z,), and
Fourier transforming, we may write Eq. (33) as

-z +4a’ K + 2% csch? k(|z| + zp) |G(z.2"1q)
Z

=lgdéz—2'), (34)

where 4a?=1+¢*/k*. To construct the Green’s function
G(z,7';q), we take, for the moment, a fix z/ >0, we split
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space into three distinct regions, and we define in each of the
regions

G-(z.2;9) =A(Z")h_(z) forz>7z',

G(z,7':9) =B )h_(2) + C(Z)h(z), 0<z<Z,

G_(z,7;9) =Dz )h_(-2)

where h.(z) are two independent homogeneous solutions to
Eq. (34) given by

h(2) =e*2m[1 - M} (35)

2a

,—0<z<0,

for z>0. To determine the coefficients A(z"), B(z'), C(z’),
and D(z’), we impose the following boundary conditions on
G(z,2":9):

G_(0,z';9)=G(0,z"3q),

3.G_(z,7';q)

=0= 0.G(z,2";9)

z=0>

G(z.2"39)

z=z' = G>(Z9Z, ,Q)

z=z">

azG<(ZaZI ;Q)|z:z/ = lB + &ZG>(Z72, sq)

Z:Z/ .

The first two conditions reinforce that the Green’s function
G(z,7';q) and its derivative are continuous across z=0. The
next two conditions reinforce that the Green’s function is
continuous across z=z', and that its derivative is discontinu-
ous as demanded by the delta-function in Eq. (34). After
some algebra, we arrive at

h_(=2)h_(z")[M(g\) + h,(0)/h_(0)] for —0 < z<0,

Gle2'1q) = %w + g8 (2 + M(@)R_ () Th(2")
B (D[hy(2') + M(gVh_()]

where
V1 +s2
Mb) = 2,2, .2 / 202, 2. 242"
(V145 + Vs "+ y ) (1T + VL +57Vs"+y" + 57 +y°)

(37)

The Green’s function G(z,z';q) for the case when z’ <0 can
be obtained by simply putting z’ ——z" in Eq. (36), as ex-
pected from the symmetry of the system. It can be seen from
Eq. (36) that G(z,z’;q) is manifestly invariant under the ex-
change of z+7z’, as it should be. We note in passing that if
we take the limit k— 0, we recover the Green’s function for
the case of counterions only for a similar problem, where the

counterions are distributed on both sides of the charged sur-
face [44].

for0<z<z, (36)
forz> 7',

An important quantity derived from the Green’s function
is the self-energy of an ion. It is defined as

d’q Iy

ngzf Gl(z,z;9) — — |. 38
BV (277)2[ Ny (38)
The physical meaning of the self-energy is that it represents
the energy an ion gained when the ion is brought from
vacuum to the vicinity of the charged plate. There are two
contributions to the self-energy: the Debye-Huckel contribu-
tion

Iy [ dq ( 1 1 Igk
Gpop0)=2 | —5| —--]=-% (39
pr(0) 2) Cm*\Nl+q® g 4m 9

and a contribution due to the presence of the plate
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AR Vy(2)/ (%)

1 |Z|/?\, 2 3

FIG. 2. The self-energy of an ion near a charged surface im-
mersed in an electrolyte solution, BV, (z) defined by Eq. (38), as a
function of z for s= xkA=0.6. The physical meaning of BV (z) is the
energy that it takes to bring the ion from vacuum to a distance z
from the plate. (Inset) G,(0,0) vs s, as given by Eq. (43). The
physical interpretation of G,(0,0) is the correlation energy arising
from the charged surface.

2
Gy(z,2) = f (quz Gy(2.2;9), (40)

where

lB K2
G.(z,2;9) = == ——=—={-csch? k(|z| + z
s( ‘I) 21]2 \/Kquz{ (| | 0)

+ M(g\)e* 20 + coth k(|z| + z9) TP}
(41)

Although an analytic but complicated expression for BV(z)
can be obtained (see Appendix A), it is more instructive to
give the asymptotics of BV (z) (see also Fig. 2). For large
|z] =%, G(z,z) decays exponentially to zero, and BV,(z)
=—lBK/(471')+0(e‘2"‘z‘), when s is finite. Therefore, as ex-
pected, the self-energy of an ion far away from the charged
surface is given by the self-energy in the bulk, which is just
the self-energy for an ion immersed in an electrolyte solu-
tion. On the other hand, in the limit s —0 (GC regime), we
find BV,(z) =~1g/(6|z|)+ O[s,1/7z%], which decays algebra-
ically for large z. For small z, we find

Igk
BV(2) === +G,(0.0)+ 0. (42)
4
Here, G,(0,0) may be interpreted as the energy to bring an
ion initially at infinity to the charged surface at z=0; it is
given by a simple formula

B Vs? =3
G,0,0)=—- —F—— tanh™!| ———|. (43)
2mAs? =3 25+ V1 + 52

Note that G,(0,0) <0, which means that an ion, regardless of
its sign, gains energy by being closer to the charged surface.
For s<1, G,(0,0)=—(lz/\)[1/(6\3)-s/(4)], while for s
>1, G,(0,0)=—Izk tanh™'(1/3)/(27s?), as shown in the in-
set of Fig. 2. Note that in both cases, G,(0,0) vanishes in the
limit N\ — o or vanishing surface charge density on the sur-
face, as it should be.

PHYSICAL REVIEW E 77, 011502 (2008)

It is important to point out that the shape of BV(z) at
small z, as shown in Fig. 2, differs qualitatively from that of
Ref. [26], where the the authors obtained the self-energy of
an ion for a system of counterions near an impenetrable
charged wall. In particular, our BV,(z) does not exhibit a
minimum at a little distance away from the surface as does
the one obtained in Ref. [26]. The origin of this difference
arises from the fact that the charged surface in our system is
assumed to be permeable to the ions and is not an impen-
etrable hard wall. In the latter case, since the ions are only
distributed on one side of the surface, an ion of either sign
experiences a repulsion from the surface due to an increase
of the effective dielectric constant on one side containing the
salt solution [45]. This effect, however, does not occur in our
system, since there are charges on both sides. Therefore, cor-
relation effects for these two systems can be subtly different,
even though, at the mean-field level, the two systems are
characterized by the same expressions for electrostatic poten-
tial and ion distributions. Note, however, that the Gouy-
Chapman lengths for the two systems are different by a fac-
tor of 2 due to different boundary conditions. As we will see
in Sec. III C, the counterion distributions are indeed qualita-
tively different near the surface for the two systems.

The Green’s function G(x,x’) can also be interpreted as
the interaction potential between two test charges located at
x and x’ in the presence of fluctuating ions in the bulk as
well as those near the charged surface. It plays the same role
as the screened Coulomb potential in the Debye-Huckel
theory for a homogeneous electrolyte solution. Therefore,
G(x,x’) is an important quantity to access the physical be-
havior of charged colloidal particles near charged surfaces, a
subject that is being actively explored experimentally
[20,21]. For simplicity, let us consider two test charges of the
same sign located at the same distance z away from the sur-
face and they are separated by a separated by a distance r
from each other. The interaction is given by

“d
Glz.r) = f %G(z,z;qwqr), (44)
0 77

where Jy(gr) is the Bessel function of the first kind of order
zero. Unfortunately, Eq. (44) cannot be integrated in closed
form, but it can be numerically integrated without any diffi-
culty.

In Fig. 3, we plot the interaction as a function of the
separation between two test charges for different values of
z/N and s. When the two charged particles are far away from
the charged surface (z>N\), the interaction reduces to the
screened Coulomb potential

—Kr

l
ff +0[e2], (45)

ar

G(z,r) =

as expected. On the other hand, when the test charges are
close to the charged surface (z<<\), the repulsion between
them is substantially suppressed (although there is no attrac-
tion), as can be seen from Fig. 3. Indeed, in the z— 0 limit,
the interaction can be shown to be
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FIG. 3. A linear-log plot of the Green’s function G(z,r) vs r for
z/A= and 0.01 and s=1.4 (a) and for z/A=c0, 1, and 0.01 and s
=0.6 (b). G(z,r) can be interpreted as the electrostatic interaction
potential between two test charges at a distance z away from the
surface and separated by r. The dashed lines represent the screened
Coulomb potential. When the charges are in close vicinity of the
charge plate, their interaction is drastically reduced. In the GC re-
gime (s<<1), the interaction goes as G(z,r)~r™.

[ “dy yJo(yr/N) (V1 + 82 + Vs +y?
G(0.r) = Bf y yJo(yr/\)( )

f i
4Ny 1+ VL +s2s?+y? + 57 +y?

(46)

At large r, G(0,r) has the following interesting asymptotic
expansions: when s> 1 (low surface charge), we find

—Kr

[
G(O,r):,—B—ze .
4Vl +s° 1

(47)

Thus, the two charges of the same sign with a magnitude ¢
would interact as if they had a reduced charge of q* =q/(1
+s52)4<g. More importantly, we find from Eq. (46) that
when s<<1 (high surface charge),

9Nt

47r

G(0,r) = +0(s). (48)

Thus, their repulsion varies inversely with the separation
raised to the fifth power. We note that the van der Waals
attraction between two charged colloids varies as —1/7°,
which has a longer range than the electrostatic repulsion in
this case. This observation suggests an overall qualitatively
different behavior for a system of charged colloids near a
highly charged surface than that in the bulk.

PHYSICAL REVIEW E 77, 011502 (2008)

B. One-loop correction to the electrostatic potential
and charge renormalization

In this section, we discuss the one-loop correction to the
electrostatic potential; we have already presented its formal
expression in Eq. (20). Instead of dealing with an integral
equation, we can gain more physical insights by converting
Eq. (20) into a differential equation using the property of the
Green’s function, Eq. (33); we find that ([1A¢Ax)]), satisfies

(- 7+ coshl (@ AP = 5 G DH) - ),
9)

where we have used the fact that the problem depends only
on z. Note that Eq. (49) can also be derived directly from the
exact relation Eq. (10). The functions F(z) and H(z), defined
by Egs. (16) and (17), respectively, can be written as F(z)
= k[ w, sinh ¢y(z)+w_ cosh ¢y(z)] and H(z)=« sinh @y(z),
where we have defined

(SAJAY = SA_AY). (50)

N | =

th

Since Eq. (49) is a second-order ordinary differential equa-
tion, we must specify two boundary conditions. The obvious
boundary condition is {[tAy(x)]); — 0 as |z| — . This imme-
diately implies that w_=0, since ([1A(x)]),=—w_ is one of
the particular solutions to Eq. (49), or, equivalently, since the
electrostatic potential is defined only up to a constant, we can
safely set w_=0 without sacrificing any physical content.
Splitting G(x,x) as a sum of three contributions G(x,x)
=2Vy—Izk/(47)+G,(z,7), and setting

w, =V _77' (51)

we can see that the right-hand side of Eq. (49) becomes
simply

2
%G(Z,Z)H(Z) CFQ =G asimh 0. (52

It is important to point out that choosing w, according to
Eq. (51) is crucial for rendering the one-loop potential
([1A¥(x)]),, finite since the right-hand side of Eq. (49) as
now given by Eq. (52) does not contain the (infinite) bare
self-energy V,,. Moreover, as we show in Sec. III D, Eq. (51)
is necessary for canceling out all the divergences in the one-
loop free energies. Note also that the finite part of w,,
—lgr/(87), is determined by demanding that the one-loop
correction to the chemical potential must coincide with that
of the Debye-Huckel result; see Eq. (69) below. Indeed, as
we show in Sec. III D, it is required to correctly produce
thermodynamic quantities in the bulk at the one-loop level,
e.g., the pressure and the free energy density.

The second boundary condition can be obtained from the
charge neutrality condition (1). Using the ion distributions at
one loop, Eq. (21) and the fact that the mean-field densities
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FIG. 4. The one-loop correction to the potential (tAy(z)),/(2I")
as given by Eq. (54) for s=1.4, where I'=Igx/(327). Note that the
derivative of (1A¢f(z)); at z=0 is zero (inset), as required by charge
neutrality.

already satisfy the charged neutrality condition [see Eg.
(29)], we find that charge neutrality condition at one loop
states that

1

f Ix(AY(x)), Cosh[%(X)]—E f d*xG(x,x)sinh[ ¢y(x)]

=0. (53)

Using Eq. (49) in conjunction with Eq. (52), the above con-
dition can be transformed into [ fmdz&?OAtﬂ(z))l:O, which
implies that 9, (1A¢(z))|.-o=0, since the symmetry of the
problem dictates that (tAy(z)), is symmetric with respect to
7+ —z. It is straightforward to find all the particular solutions
to Eq. (49) (see Appendix B); our final result for the one-
loop correction to the electrostatic potential can be expressed
as

(AP, = EELAG) - Feseh w +20),  (54)

where F(z) is defined and evaluated in Eq. (B6), and A(s) is
defined in Eq. (B5) and it can be explicitly evaluated to give

Als) . h—1< V5?3 )
§)=— ——=——tan —_—
\e'mvm 2s + \"m

|: VI +52(V1 + 52 +s)]
—1In .

252

(55)

It is straightforward to verify explicitly that Eq. (54) satisfies
Eq. (49) along with all the boundary conditions, and in par-
ticular, the charge neutrality condition (53). Note also that
Eq. (54) can be derived directly from performing the inte-
grals in Eq. (20).

In Fig. 4, we plot (1A¢Az)); as a function of z. Note first
that (1Ay(z)); is negative for all values of s and z, so that it
reduces the mean-field potential (see also Fig. 6). Therefore,
correlation enhances the screening of a charged surface. For
small z, we find (AY(z)),=13A(s)/(167N\) +O(z2), the de-
rivative of which is clearly zero at z=0, as required by
charge neutrality (see inset of Fig. 4). For large z, we have

PHYSICAL REVIEW E 77, 011502 (2008)
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FIG. 5. The renormalized surface charge density Uilfz(s) versus
1/s for I'=lgx/(327)=0.1 and 0.26. Note that 1/s=Igny/(4Zk) is
proportional to the bare surface density n.

two cases to consider. First, in the limit s—0, we find
(1Ayd(z)); =2 In(kz). Second, for finite s, we find, for large z,
that

(A, = LT+ =AW, (56)

from which we identify, in analogy to Eq. (27), a renormal-
ized surface charge density at one loop to be

1 lpk
créif)(s)zzts( 1+;—1)[1+;T77A(s)}. (57)

For finite s, the renormalized charge at one loop is always
lower than the renormalized charge given by the mean-field
theory, Eq. (27), as can be seen in Fig. 5. For low surface
charge s> 1, we find that (Tig(s)=2/s+0(s‘2). Thus, for suf-
ficiently low surface charge, there is no charge renormaliza-
tion even when correlation is included. On the other hand,
for highly charged surfaces, s<<1, ogf)(s) =4(1+2I" Ins),
which can become negative for sufficiently large I’
=lgzk/(327). Tt is clear from Eq. (57) that there is a critical
I'.(s)=—1/.A(s), above which the effective charge becomes
negative. This phenomenon is called charge inversion, which
has been discussed intensively in the literature [7]. For s
> 1, we find that I'.(s) ~ 52, while s<1, I'.(s) ~[In(1/s)]".
For an order of magnitude estimate, taking ny~ 1/100 A2,
k'~100 A, and divalent counterions at room temperature,
we find 023 ~ 2.2, which is about 40% more of a reduction to
the actual surface charge than that predicted by the mean-
field theory (0'0)~3.9).

We note in passing that our exact expression for the ef-
fective charge (57) differs from that of Ref. [24], although
qualitatively they exhibit the same trend, with one notable
difference: the authors of Ref. [24] found that as s— o, the
effective charge is renormalized by a finite amount, whereas
we find that it is not renormalized. The origin of this differ-
ence may be attributed to (i) the authors of Ref. [24] consid-
ered a system of ions (positive and negative) in contact with
two charged hard walls, whereas the present problem is for-
mulated for a permeable charged surface and (ii) the authors
of Ref. [24] obtained the expression for the effective charge
from the asymptotic behavior of the pressure in the limit of
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FIG. 6. The electrostatic potential to one-loop order ¢(z)
= ¢)(2) +(1Ay(z)), for s=1.4 (a) and s=0.6 (b). From the top
curves I'=1Izk/(327)=0, 0.26 , and 0.7. Note that correlation ef-
fects are more prominent for highly charged surface charge s <1, as
expected. Furthermore, for sufficiently high I', ¢,(z) becomes nega-
tive, indicating charge inversion.

large separations between the two hard walls, whereas Eq.
(57) was obtained from the asymptotic behavior of the elec-
trostatic potential, as is done traditionally, at the one-loop
level. Thus, there may be a difference in the definitions of the
effective charges. We also note that the Wigner crystal ap-
proach predicts that charge inversion occurs when I'.(s)
~s72 [14], which is different from above.

As specific examples, in Fig. 6, we plot the electrostatic
potential at the one-loop level: ¢,(z) = @y(z) +(1AY(z));. As
can be seen, it is generally smaller than the mean-field po-
tential, and for a fixed I, this reduction is more dramatic in
the GC regime (s<<1) than in the DH regime (s>1). For
sufficiently large I, the electrostatic potential becomes nega-
tive at intermediate z, which is the result of charge inversion.
The electrostatic potential at the surface ¢,(0) is related
(in some cases) to the zeta potential which can be extracted
from_electrokinetic measurements [3], and ¢;(0)=2In[(1
+\1+5%)/s]+[1z/ (167N\) ][ A(s) - F(0)]. For small s, we find
©(0)==2 In(s/2)— I/ (16y3N) +O(s), while for large s, we
find ¢;(0)=2/s—1g[In4-1/2]/(167As*)+O(1/s?). We end
this subsection by emphasizing that even though our one-
loop calculation predicts charge inversion, higher order terms
in the loop expansion may become prominent before the ef-
fective charge changes sign.

C. Ion distributions at one loop

Using Eq. (21) and the results from previous sections, we
can express the one-loop ion distributions as

PHYSICAL REVIEW E 77, 011502 (2008)

FIG. 7. The normalized ion distributions [p.(z)=(Iz\%/2)
X{p+(z));] to one-loop order for s=1.4 (a) and s=0.6 (b). The
dashed lines represent mean-field ion profiles. In (a) and (b), the top
dashed curves represent counterion profiles and the bottom dashed
curves represent coion profiles. The solid curves present one-loop
ion distributions with I'=1Izk/(327)=0.7.

K2 et ©(2)

(=" | 1= GAMD = 16,62 | (58)

In Figs. 7 and 8, we plot the ion distributions for different
values of s and I". As can be seen, there are, in general, more
ions of both signs near the charged surface (though the effect
is more drastic for counterions than for coions) than pre-
dicted by the mean-field theory. This is because, as we have
seen in Sec. III A, correlation enhances the energy gained for
an ion, regardless of its sign, when it is closer to the surface.
In particular, there is an increase in the counterion density

2 3 ‘Z‘/}\.A 5

1 2|Z|/}\.3 4

FIG. 8. The normalized ion distributions to one-loop order for
s=0.4 and I'=0.7. The solid (dashed) curve represents the counter-
ion (coion) profile. The inset shows the formation of a secondary
coion layer.
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with respect to the mean-field counterion density, at length
scale z<z', where z is determined by (AY(z)),
—G,(z",2")/2=0, while for z>7" the counterion density is
lower than the mean-field counterion density. This is not sur-
prising since charges are conserved. Note that Z s always
less than the Gouy-Chapman length N and z roughly de-
creases with increasing s.

The counterion density at the surface can be substantially
larger than that predicted by the mean-field theory; the de-
viation is given by Ap+(0)/pio)(0)=(1A¢(0)>1—G5(0,0)/2,
which scales as Ap+(0)/pi0)(0) ~T'/s for s<1, and
Ap,(0)/ pio)(O) ~T'/s? for s> 1. Thus, deviations from mean-
field behaviors are more prominent in the GC regime, s<<1,
than in the DH regime, s> 1, as expected. For sufficiently
large T, the counterion density at intermediate z starts to
develop a minimum which has a lower value than density in
bulk, while the coion density starts to develop a maximum,
which in some cases, depending on I', has a value higher
than the counterion density. Thus, at some large I', a second
layer of coions forms as can be seen in the inset of Fig. 8.
This effect has been observed in a recent simulation [34],
and it exemplifies the dramatic consequences of correlation
effects in the system. For large z, we find

K2

> [1+ o'D(s)e 0. (59)
B

() =
Thus, the formation of the second layer of coions and the
electrostatic potential being negative are all manifestations of
charge inversion. We remark in passing that the potential of
mean force, which is related to the ion profiles by SW.(z)
=In[(2l5/ k)P (2))1]= F ¢(2) +3G,(z,2), can be probed
experimentally by an atomic force microscope technique
[13], thus providing a connection of correlation effects stud-
ied theoretically here to experiments.

It might be important to point out that the behavior of the
counterion density differs qualitatively from that of Ref.
[26], where the counterion density at the surface coincides
with the mean-field counterion density to ensure that the con-
tact value theorem is obeyed. The contact value theorem
states that the pressure at the surface must equal to the pres-
sure in the bulk [40]. Physically, it means that if the charged
wall is in equilibrium with the counterion gas, it must also be
in mechanical equilibrium with the counterion gas or else the
charged wall would move. Note that our one-loop solution
violates the contact value theorem. The simple reason under-
lying this violation arises from that our problem is formu-
lated for permeable surfaces and the contact value theorem
needs not hold. This is because our system is symmetric with
respect to both sides of the surface: the electrostatic contri-
bution to the pressure across the surface includes a contribu-
tion from fluctuations in the ion distributions on both sides of
the plate.

It is clear that for very large I', the counterion density
becomes negative. We take this to be the upper bound of
I',(s) at which our one-loop solution is no longer valid. For
example, we find that for s~ 1, I', ~6. Note that in order to
get exactly when the one-loop correction breakdown, we
must go to a higher loop or compare our results with com-
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puter simulations. We defer a discussion on the validity of
our one-loop correction to Sec. IV.

D. Fluctuation contributions to the free energies

In this section, we evaluate the one-loop correction to the
grand potential and to the free energy. Using Eq. (22), the
grand potential can be written as

B[Pl = BQ[ ] + % In det K - % In det[— VZ/1,]

2

l
- ’l(—(VO - B—K) f d*x cosh ¢y(2), (60)
B

where we have used the fact that w_=0 and w,=V,
—lgi/(87), as determined in Sec. III B. The fundamental
quantity to evaluate is the functional determinant

1 L1 ,
BAQ = 2 Indet K - 2 In det[— Vi/lg], (61)

where KE[—Vi+ «* cosh @y(x)]/1, defined in Eq. (14). In
principle, in order to evaluate Eq. (61), we have to find the

eigenvalues and eigenfunctions to the operator K with appro-
priate boundary conditions and reexpress Vi in terms of
those eigenvalues. Equation (61), then, corresponds to the
difference between the sum of the logarithm of the eigenval-

ues for K and the sum of the logarithm of the eigenvalues for
—Vi. For spatially uniform systems, e.g., the Debye-Huckel
theory, this procedure can be easily carried out via Fourier
transform. However, for spatially nonuniform systems,
which is the case for our system, this procedure seems labo-
rious at best and it has only been attempted in Refs. [24,25].

Here, we adopt a trick which has been employed previ-
ously to study fluctuation effect in counterion-only systems

[27]; it is based on the identity &1n det X=Tr X~ X, for any

operator X. As shown below, this identity allows us to evalu-
ate exactly the functional determinant (61) in a straightfor-
ward manner, which does not involve an ad hoc subtraction
scheme to cancel the infinite bare energy. Thus, differentiat-
ing Eq. (61) with respect to [z and using the identity above,
we find

IBAQ 1 f s a.,
— = — h 62
ﬁlB 213 XG(va) alB[K COs qDO(Z)]’ ( )

where we have made use of the fact that the inverse of K in
position space is the Green’s function G(x,x’) and that the
trace in position space corresponds to setting x=x' and inte-
grating over space. Writing G(x,x) as a sum of three contri-
butions G(x,x)=2Vy—Ilzx/(47)+G(z,z), we see that the
first term in Eq. (62), which represents the bare self-energy
term, precisely cancels the bare self-energy term in Eq. (60).
Therefore, the final result for BQ,[ ¢] is perfectly finite, as it
should be.
The second term gives the Debye-Huckel contribution
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PR _ X i D[P cosh ()], (63
e e el 63

which contains a volume contribution and a surface contri-
bution. It is straightforward to show that the volume contri-
bution is simply the standard Debye-Huckel result for a
homogeneous electrolyte BAFpy/V=—«>/(127) [46]. The
surface contribution can be written as

(aﬁAQDH> _ ii(\"1+s2—s) N
oy |y 2wl A ’

which can be integrated back with respect to lp in a straight-
forwarﬂ manner by noting that k~+lz, N~1/lg, and s
~ 1/ylg. Therefore, we obtain

P sA
1270 12m\2

BAQ = - [22 = sH)V]1 + 5% =3s]. (64)
The third term in Eq. (62) arising from the charged plate
contains only a surface contribution

1 9AQs 1 J“ a .,
— S = — | dzG(z0)— h .
A a, 2] & 5(2,2) alB[K cosh ¢(2)]

(65)

In Appendix C, we present the detail of evaluating BAQ.
The final result for BAQ, defined in Eq. (62), is

AQ = BAQ AQ LRV B
BAQ = BAQL + B S=" Tom’ T gma (66)

where

2
_ N2 S VsT=3
K(s) = V(1 +s°)(s” - 3)tanh (——)
25+ V1 + 52

— s
+25(V1 + 52 —5) — 52 ln< —)
V1 +S2

S N
-5 ln<1+’——2). (67)

In Eq. (66), we have discarded the bare self-energy term,
since, as mentioned above, it cancels the bare self-energy
term in Eq. (60). Note that BAQ <0, as can be seen from a
plot of K(s) depicted in Fig. 9. Therefore, fluctuations have
an overall effect of lowering the free energy, as it should be.
For s<1, K(s)=m/vy3=1.8, which agrees with the
counterion-only case [44], and for large s> 1, we find K(s)
=2. Note that in both cases the numerical values of K(s) do
not differ significantly; IC(s)=2; therefore, for all practical
purposes, the surface contribution to AQ is AQ/A=
—1/(4m\?).

The results above may be understood from the following
scaling arguments: the fluctuation contribution to the surface
free energy, AQ)/.A, may be estimated by multiplying the
correlation energy to the total charge density near the
charged surface and a length over which the ions are con-
fined: G,(0,0)(k*/1)(14+2/5%)z,. For s>1, G,0,0)~
—Izk/s? and 20~ x~ !, so that AQ/A~—1/\2. On the other

PHYSICAL REVIEW E 77, 011502 (2008)

FIG. 9. K(s), defined in Eq. (67), as a function of 5. For small s
(highly charged), K(s)=m/\3=1.814, while for large s (low
charge), KC(s)=2.

hand, for s<<1, G,(0,0)~-Ilz/N and z,~\, and therefore,
AQ/ A~ —=1/7\2, consistent with the results above. Note that,
in both cases, AQ/A vanishes as N —® or ny—0, as ex-
pected.

We are now in a position to obtain explicit expressions for
the grand potential and the Helmholtz free energy for our
system, and more importantly, to extract the surface tension.
The grand potential can be expressed as BQ,[¢|=—p,V
+7,(s).A. The bulk pressure at one loop p; has three contri-
butions: a mean-field contribution py=«?/Iz=2c,, a contribu-
tion coming from the last term in Eq. (60) and a contribution
coming from the functional determinant (64). Therefore, p,
=2¢,— K3/ (8m) + K>/ (127)=2c,— >/ (247), which is pre-
cisely the pressure for a homogeneous electrolyte [46]. Simi-
larly, the surface tension to one loop is

— K(s)
SZ(\J1+s2—s)— 5
2\ 8T\

Y1(s) = yo(s) + (68)
As can be seen in Fig. 10, the surface tension is substantially
lowered by fluctuation effects. Indeed, at sufficiently high
couplings, it becomes negative. Thus, charge fluctuations
may drive the system to instability.

The Helmholtz free energy at the one-loop level is related
to the grand-canonical potential by Eq. (23) with one-loop
ion distributions, (58). The chemical potentials to one loop is
now given by

7

-
=5
[
o0
=
~ 3

~—

FIG. 10. The electrostatic contribution to the surface tension at
one loop vs 1/s for (from top to bottom) I'=0.2 and 0.5. The dashed
line represents the mean-field surface tension. Note that correlation
effects drastically lower the surface tension.
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! ADd
/.L(_:)Z—B_K+ln(—a i (69)
- 8 Ip

where we have used the fact that 5At/A(i0)=V0—lBK/(87T),
as given by Eq. (51). It is important to point out that, in
contrast to the chemical potentials at zero loop, ,u(l) is per-
fectly finite. We find that the bulk contribution to the free
energy is

3 2 2.3 3

h__, K_1<ﬂ>=2 .
Bft ~ 511 5, )= 2elntea’) - 11- 1,
(70)

which is precisely the Debye-Huckel free energy, and that
the surface contribution is given by

r/_2
1+\1+s)

N

8
1)=—1 3a’ —1(
ﬁfg I n(a;/a )+lB7\

4 — a’
+—Wl+s2=s)|In|— | =2
Ig\ 21y
1 Ra// (s) Ka®
+——| = In ~-K@s)|, (1)
TN\ 1+ 2lp
where J4(s) is defined in Eq. (C8), and we have discarded a
higher order term of order of O(lg) in Eq. (71). We remark
that the fluctuation contributions to the surface free energy
not only consist of the functional determinant, but also a
term [oc 7,(s)] that arises from the change in the ion distri-
butions near the surface. Note that this term vanishes in both
s—o0 and s— 0 limits. In the latter limit, it can be shown

that Eq. (71) reduces to the one-loop surface free energy for
the counterion case [44].

IV. DISCUSSION AND CONCLUSION

In conclusion, we have carried out a comprehensive study
of fluctuation effects in a charged surface immersed in an
electrolyte solution. Using a field-theoretical formulation, we
have analyzed analytically the one-loop contributions to the
electrostatic potential, ion distributions, and free energies.
Our main results may be summarized in the form of a phase
diagram depicted in Fig. 11. In the region labeled PB, where
s<<1 and I'<<1, the system may be approximated by the
mean-field PB theory. In the DH region (s> 1 and I'<< 1), the
PB equation can be linearized, leading to an exponential de-
cay of the electric potential with a bare surface charge On
the other hand, I'>1/s, we define a modified DH" regime,
where correlation effects are becoming important, and the
effective surface charge is substantially reduced. For yet
higher T', in a region labeled, “charge inversion,” the effec-
tive surface charge becomes negative and the formation of
the second layer of coions occurs. Above the dashed line
within the “charge inversion” regime, the electrostatic con-
tribution to the surface tension becomes negative. In the re-
gion labeled “SC,” denoting the strong-coupling regime, our
one-loop calculation would most certainly fail. This regime
is delimited by the most upper solid curve in Fig. 11, which
is obtained from inspecting the counterion profile when it
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FIG. 11. A phase diagram [I"=lzx/(327) vs 1/s=lgny/(4Zk)]
for a charged surface immersed in an electrolyte solution. The ver-
tical line separates the Debye-Huckel (s<<1) and the Poisson-
Boltzmann (s>1) regimes. The line I'=1/s further separates a
modified DH regime "> 1/s, where the effective surface charge is
substantially lowered by fluctuation effects, as compared to the
mean-field prediction in the DH regime (I'<<1/s). The lower solid
curve I'(s)==1/A(s) indicates the sign of the effective surface
charge just about to reverse. The dashed line signifies the vanishing
of the surface tension as determined by Eq. (68). The upper solid
line (determined numerically) represents the point at which the
counterion profile just becomes negative at some finite distance
away from the surface. Thus, SC denotes the strong coupling re-
gime where our one-loop calculation would most certainly fail.

just becomes negative at some finite distance z. Note that this
line represents only an upper bound where our one-loop cal-
culation would break down. As can be seen in Fig. 11, it is
reassuring that the charge inversion occurs before the density
becomes negative. However, it should be emphasized that
there is no guarantee that the one-loop expansion is valid at
the point where charge inversion takes place, and the precise
location where our one-loop correction breaks down must be
given by a higher-loop calculation or by computer simula-
tions.
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APPENDIX A: AN ANALYTICAL EXPRESSION
FOR THE SELF-ENERGY

In this appendix, we give an explicit expression for the
self-energy, Eq. (38). It is convenient to rearrange the expres-
sion for G,(z,z;¢) given by Eq. (41) so that the integral over
q is manifestly converging. It is straightforward to show that
G,(z,z;q) can be written as

2

Ip
=" csch? k(|z] + zo)
27 i+ { ’

X[1= (V1 +52 4 52 M(gh)e2el2a1]

Gy(z,2:9) =

7
+ —ZM(q)\)e_““"‘z‘
K
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+2Qa-1)M (q)\)e_““’“z‘ coth x(|z| + Zo)} ,
(A1)

where 4a®=1+¢*/k*. Using the expression above, we can
explicitly evaluate the self-energy as

BV(z) = if—;{— 1= s[B(s) + V1 +s%(s + V1 + 5227, (|z|/N)]

V1 + 52
Xesch?[k(|z] + zo) ] + S T5(lzl/N)

+ 21 + s> Jo(|zl/N)coth[ k(|2 +Zo)]}’ (A2)

where

B(s) f‘” du u(u+s)+2(u+ )V +5>+2(1 +5%)
) =
guts (U N1+) (1 +uN1+ s>+ 1)

2 [2
— -1 -3
= (V1 +52+5)? > tanh_1<w——)
Vs2=3 25+ V1 + 52
/ 2 / 2 / 2\3
V1+s V1 +57(s+ V1 +5°)
+ 5 ln{ 25)" }}, (A3)
“ du 1 — 249
o ,
: s M2—S2(u+ V/1+s2)(1+u\"l+s2+u2)
(\ +S)2 4sx
= #{e E | (4sx) + yg + In(4sx)} + 2{In(2s)
s\
+ " (4sx)}
1-52 \s2=3
2\r +52Vs 2s+ V1l +s

4t x2s+v,)] - A2t [x(2s+v))]

- -{1n[\/ S+

+5°+5)]+ & PE [x(2s + v,) ]

+ IR [x(2s + v) V= {In(s + V1 +5?)

+ er(s+\*sl+S2)E1[2_x(s +Vl+s )]}

© d —2ux
Jo(x) Ef - =

u+s (u+ V1 +s59)(1 +uyl +52+u?)

(A4)

+S

= (V + 5%+ 5)e>E, (4sx)
\rl + 52

-1+ szezwlﬂzEl[Zx(s +\1+s )]

2 _
2 %e’%E [x(2s + v,)]
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22 g s + )]
- e"-E[x2s+v)] ¢,
ws2-3 !

e —2ux
j3(x)5f du ¢

(w+V1+s)(1 + w1 +52 + u?)

(AS)

= ezxv““zEle(s +\V1+59)]
v_e-E\[x(2s + v_)] - v,e"+E | [x(2s + v,) ]
+ f
2Vs*-3

(A6)

vo(s)=\1+s>*+\s>-3, E\(x)=[Tdt e™/t is the exponen-
tial integral, and y;=0.577216 is the Euler constant.

APPENDIX B: SOLVING FOR THE
ONE-LOOP POTENTIAL

In this Appendix, we present details on solving for the
one-loop electrostatic potential leading to Eq. (54). From
Egs. (49) and (52), the final form of the equation that
([1A¥(2)]); satisfies is

{= & + K® + 267 esch? k(2] + 2o K1AY(2)]),

K

= —G,(z,z)sinh ¢y(z),

5 (B1)

where Gy(z,z) is given by Eq. (40), and we have used the
identity cosh[¢y(z)]=1+2 csch? k(|z| +z,). Using Eq. (41)
and the identity sinh @y(z)=2 csch «(|z| +z¢)coth x(|z| +2z¢),
we find that the solution to Eq. (B1) may be expressed as

d*q L’ [= (@) + M(gN)hy(2)]
2m)? 2q 27 \"/Kz + q2 |
(B2)

AU, =5

where h;(z) are the solutions to the inhomogeneous equation

{- &+ K+ 212 csch? k(|z| + 29)}hiz) = fi(z),  (B3)

subject to the boundary conditions that (i) h(z) —0 as z
— o0 and (ii) d.h;(z)=0 at z=0. In Eq. (B3), fi(z) are given by
fi(@)=csch® k(|z]+zp)coth w(|z[+29) and  fr(x)=e 20
+coth «(|z|+z¢)]* esch k(|z| +2zp)coth k(|z]+z0). It is straight-
forward to show that these solutions are given by

csch k(2] +20)| 2+s2
hy(z) =

. = —coth «(|z| + Zo):| )

S\/1+s

csch + 2+ 3s°
hz(z)=M[l +8a2+2a< ,—SZ)]

8a sVl +s

csch «(|z] + zg)e™ e

8a

[1+2acoth k(|z| + z0)].

Using these solutions, we can express {[tA¢(z)]); as

011502-14



FLUCTUATION AND CORRELATION EFFECTS ON A ...

[
(AY2)), = ﬁm(s) — F()Jesch (|2 +25),  (B4)

where A(s) and F(z) are defined by and they can be evalu-
ated as

“ sdy 2+5°
A(S)Ef = 2{1— / >
0 YNs“+y sVl +s

. /vt(y){1 w82 2a(2+3s2)]}
2a V1452
\s2-3
T vam tanh <2s + Vﬁ)
—ln[ \/Tsz(\'m+s)]’

25?

(B5)

o

o {1 th (|| + zo)
—=—=) | — coth «(|z| + z¢
0 yVst+y?

M(y)e—4om\z\
L Me T

2a

=—s[B(s) + V1 + s*(s + V1 + 5227, (|z|/V)]

Flz) =

[1+2a coth k(|z| + Zo)]}

X[coth k(|z| + zg) = 11— sV1 + 52 T,4(|z)/N),
(B6)
where 7,(x) is defined in Eq. (A4) and
o du e—2ux
Ja(x) Ef

Cu(u+s) (w+ N1+ + a1+ 52+ u?)

s\/—{E 1(2sx) - ez’” 1+ E[2x(s + V1 +s)]}

.\ e E [x(2s + v,)] = e-E [x(2s + v_)] ~ Jo(x)
S\r’/s2 -3 s
(B7)

APPENDIX C: DETAILS ON THE EVALUATION
OF FUNCTIONAL DETERMINANT

In the appendix, we present the details on evaluating the
functional determinant arising from the charged plate BAQ.
Taking the derivative explicitly with respect to I in Eq. (65)
through its dependence on « and \, we find

1 9BAQs 2 dk [ d’q
— =—— 7,(q) +2Z.
A aly laly | (2 )2[ 1(q) 2(61)]
4 s O\ f d’q
-— — TI:(g), (C1
ZB)\Z\/l +S2 &ZB (271_)2 3(q) ( )

where we have substituted the definition of G(z,z), Eq. (40),
in Eq. (65), and the integrals Z,(q) are defined by and evalu-
ated, after inserting the expression for G(z,z;¢q), Eq. (41),
and integrating over z, as
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o0

I\(q) = k| dzG(z.z:9)

P

g K [ (N1+s2=5)

_Zqz\/K2+q2 S
M(g\)
das

+ (s+4sa? +4a\1 +s )} (C2)

I,(q) =« f dzG(z,z;q)csch?[ k(z + z¢) ]
0

X{l - (KZ+ %)coth[/((z+zo)]}
\r'l + 5

ly & — 1
=— (V145 =5) - ——
2q2\K+ 2S|: 2V1 +s?
M(q)\)}
241 + 57

Iy(g) =« f dzG (z,z;q)csch’[ k(z + z) Jeoth[ k(z + o) ]
0

_ lB K2 1
2¢° kP + >4

X[= 14+ M(gh)(1 +4das\1 + 5%+ 25%)], (C4)

where s=x\ and 4a’=1+¢%/«’. Inserting these expres-

sions for Z,(¢g) in Eq. (C1) and integrating over ¢, we find
d*q
—|Z +27.
(277)2[ 1(q) 2(‘1)]
l 1 [~ 4 1+
__lx 2J dy_ 1y e
8w l+s sl\m y 1 4 2
1+s2 ryry
d2
B Ip 1 fw dy 24y
- 1677)\52\’1"'5 s/\1+521+y 1 v+ 2.
1+s2 ey
(Co)

Now, we integrate Iz back to obtain BA(g, which can be
expressed as

BAL =

As* f Gasz(a)+2jB(9) )

4\? F1+6)

where J,(s) and Jp(s) are given by

011502-15



A. W. C. LAU
* dy 1+y
Tals) = _27 1
s/ 1+s 2
+y+
1+s? yry
1+ 52

= In{(N1 + s%/s)[1 + (N1 + s%/s)]}

(l—s2)y/1+s2t h_1< Vs2-3 ) 8)
= + ——=—tan — |,
\s? =3 25+ V1 + 52
* dy 24y
jB(S)Ef ‘
s/\““1+521+y 1 v+ 2
1+s2 yry
1+521 (1 )
=- n|1+-—+—=
2 V1 + 52
B+ sV +52 O Vs? -3
= h , 5 |- (C9)
Vs =3 2s+ V1l +s
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Note that in obtaining Eq. (C7), we have to use the fact that
k~\lg, N\~1/1g, and s~ 1/\lg. Performing the remaining
integrals in Eq. (C7), we find

+s

1 1 — 2 1+ s>
B0y = g\n1+52(1-2s2)-%1n(\ )

4\? s

2

+
+s

O —
(1 + 2 2—3
+ —\( s ) tanh_1<

N
In| 1+ —
( vl 2)

Vs? =3 )
25 + V1 + 52
(C10)

It is straightforward, but tedious, to verify that differentiating
Eq. (C10) with respect to Iz does lead back to Eq. (Cl).
Combining Eq. (C10) with the surface contribution of the
Debye-Huckel term (64), it is straightforward to show that
the resulting expression for the surface contribution to SAQ)
is given by Egs. (66) and (67).
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